33 SCENARIOS FOR RETRIEVAL OF A BUFFER 51

Process A Process B

Cannot find block b
on hash queue

No buffers on free list
Sleep

Cannot find block b
on hash queue

No buffers on free list

Sleep

Somcbody\frm a buffer: brelse

Takes buffer from free list

Assign to block b

, ‘ll'ime

Figure 3.10. Race for Free Buffer

In the end, process B will find its block, possibly allocating a new. buffer from
the free list as in the second scenario. In Figure 3.11, for example, a process
searching for block 99 finds it dn its hash queue, but the block is marked busy.
The process sleeps until the block becomes free and then restarts the algorithm
from the beginning. Figure 3.12 depicts the contention for a locked buffer.

The algorithm for buffer allocation must be safe; processes must not sleep
forever, and they must eventually get a buffer. _The kernel guarantees that all
processes waiting for buffers will wake up, because it allocates. buffers during 'the
" execution of system calls and frees them before returning.’ Processes in user mdde



52 THE BUFFER CACHE

hash queue headers m
28* |~ 4 - 64

blkno O mod 4 }:-----
. 2 ‘ \
blkno 1 mod 4 [\ 17 5 97
blkno 2 mod 4 }---... 98 1 50 10
blkno‘3'modv4u. 3 35 99
busy
freelist header

Search for Block 99, Block Busy

Figure 3.11. Fifth Scenario for Buffer Allocation

do not control the allocation of kernel buffers directly, so they cannot purposely
“hog” buffers. The kernel loses control over a buffer only when it waits for the
completion of I/O between the buffer and the disk. It is conceivable that a disk
drive is corrupt so that it cannot interrupt the CPU, preventing the kernel from
ever releasing the buffer. The disk ‘driver must monitor the hardware for such
cases and return an error to the kernel for a bad disk job. In short, the kernel can
guarantee that processes sleeping for a buffer will wake up eventually.

“Itis also. possible to imagine cases where a process is starved out of accessing a
buffer. In the fourth scenario, for' example, if several processes sleep while waiting
for a buffer to become free, the kemnel does not guarantee that they get a buffer in
the order .that they requested one. A process could sleep and wake up when a
buffer becomes free, only to go to sleep again because another process got control of
the buffer first. Theoretically, this could go on forever, but practically, it is not a
problem because of the many buffers that are typically configured in the system.

3. The mount system call is an exception, because it allocates a buffer until a later umount call. This
exception is not critical, because the total number of buffers far exceeds the number of active
mounted file systems.



33 READING AND WRITING DISK BLOCKS 53

Process A Process B Process C

Allocate buffer
to block b

Lock buffer
Initiate I/0
Sleep until 1/0 done

Find block b
on hash queue

Buffer locked, sleep

Sleep waiting for
any free buffer

(scenario 4)

1/0 done, wake up

brelse(): wake up others
Get buffer previously
assigned to block b
reassign buffer to block b’

buffer does not contain
block b
Time

v start search again

Figure 3.12. Race for a Locked Buffer

3.4 READING AND WRITING DISK BLOCKS

Now that the buffer allocation algorithm has been covered, the procedures for
reading and writing disk blocks should be easy to understand. To read a disk block
.(Figure 3.13), a process uses algorithm getblk to search for it in the buffer cache.
If it is in the cache, the kernel can return it immediately without physically reading
the block from the disk. If it is not in the cache, the kernel calls the disk driver to
‘'schedule” a read request and goes to sleep awaiting the event that the 1/0
completes. The disk driver notifies the disk controller hardware that it wants to
read data, and the disk controller later transmits the data to the bt}ﬂ'er. T



54 THE BUFFER CACHE

|
algorithm bread  /* block read*/
input: file system block number
output: buffer containing data

get buffer for block (algorithm getblk);
if (buffer data valid)

return buffer;
initiate disk read;
sleep(event disk read complete);
return(buffer);

)

Figure 3.13. Algorithm for Reading a Disk Block

the disk controller interrupts the processor when the 1/0 is complete, and the disk
interrupt handler awakens the sleeping process; the contents of the disk block are
now in the buffer. The modules that requested the particular block now have the
.data; when they no longer need the buffer they release it so that other processes can
access it.

Chapter 5 shows how higher-level kernel modules (such as the file subsystem)
may anticipate the need for a second disk block when a process reads a file
sequentially. The modules request the second 1/0 asynchronously in the hope that
the data will be in memory when needed, improving performance. To do this, the
kernel executes the block read-ahead algorithm breada (Figure 3.14): The kernel
checks if the first block is in the cache and, if it is not there, invokes the disk driver
to read that block. If the second block is not in the buffer cache, the kernel
instructs the disk driver to read it asynchronously. Then the process goes to sleep
awaiting the event that the I/0 is complete on the first block. When it awakens, it
returns the buffer for the first block, and does not care when the I/0 for the second
block completes. When the 170 for the second block does complete, the disk
controller interrupts the system; the interrupt handler recognizes that the I/0 was
asynchronous and releases the buffer (algorithm brelse). If it would not release the
buffer, the buffer would remain locked and, therefore, inaccessible to all processes.
It is impossible to unlock the buffer beforehand, because 1/0 to the buffer was
active, and hence the buffer contents,were not valid. Later, if the process wants to
read the second block, it should find it in the buffer cache, the I/0 having
completed in the meantime. If, at the beginning of breada, the first block was in
the buffer cache, the kernel immediately checks if the second block is in the cache
and proceeds as just described.

‘The algorithm for writing the contents of a buffer to a disk block is similar

. (Figure -3.15). The kerne! informs the disk driver that it has a buffer whose
'contents should be output, and the disk driver schedules the block for 1/0. If the
write is synchronous, the calling process goes to sleep awaiting 1/0 completion and



34 READING AND WRITING DISK BLOCKS ss

algorithm breada /* block read and read ahead ¢/
input: (1) file system block number for immediate read

(2) file system block number for asynchronous read
output: buffer containing data for immediate read

if (first block not in cache)
{
get buffer for first block (algorithm getblk);
if (buffer data not valid)
initiate disk read;
}
if (second block not in cache)
{
get buffer for second block (algorithm getbik);
if (buffer data valid)
release buffer (algorithm brelse);
clse
initiate disk read;
}
if (first block was originally in cache)
{

read first block (algofithm bread);
return buffer;
)
sleep(event first buffer contains valid data);
return buffer;

Figure 3.14. Algorithm for Block Read Ahead

releases the buffer when it awakens. If the write is asynchronous, the kernel starts.
the disk write but-does not wait for the write to complete. The kernel will release
the buffer when the 170 completes.

There are occasions, described in the next two chapters, when the kernel does
not write data immediately to disk. If it does a “delayed write,” it marks the
buffer accordingly, releases the buffer using algorithm brelse, and continues without
scheduling 1/0. The kernel writes the block to disk before another process can
reallocate the buffer to another block, as described in scenario 3 of getblk. In the
meantime, the kernel hopes that a process accesses the block before the buffer must
be written to disk; if that process subsequently changes the contents of the buffer,
the kernel saves an extra disk operation.

A delayed write is different from an asynchromous write. When doing an
asynchronous write, the kernel starts the disk opentton unmediately but doel not
wait for its completion. For a “delayed write,”
write to disk as long as possible; then, recall% thm

AcC N.
CALL m— ébiba




THE BUFFER CACHE

algorithm bwrite  /* block write */
input: buffer
output: none

initiate disk write;
if (1/0 synchronous)
{

sleep(event 1/0 complete);
release buffer (algorithm brelse);

else if (buffer marked for delayed write)
mark buffer to put at head of free list;

)

Figure 3.15. Algorithm for Writing a Disk Block

getblk, it marks the buffer “old” and writes the block to disk asynchronously. The
disk controller later interrupts the system and releases the buffer, using algorithm

bre

Ise; the buffer ends up on the head of the free list, because it was “old.”

Because of the two asynchronous I/0 operations — block read ahead and delayed

wri

te — the kernel can invoke brelse from an interrupt handler. Hence, it must

prevent interrupts in any procedure that manipulates the buffer free list, because

brelse places buffers on the free list.

35

ADVANTAGES AND DISADVANTAGES OF THE BUFFER CACHE

Use of the buffer cache has several advantages and, unfortunately, some
disadvantages.

The use of buffers allows uniform disk access, because the kernel does not need
to know the reason for the I/0. Instead, it copics data to and from buffers,
regardless of whether the data is part of a file, an inode, or a super block. The
buffering of disk 1/0 makes the code more modular, since the parts of the
kernel that do the I/O with the disk have one interface for all purposes. In
short, system design is simpler.

The system places no data alignment restrictions on user processes doing 1/0,
because the kernel aligns data internally. Hardware implementations frequently
require a particular alignment of data for disk 1/0, such as aligning the data on
a two-byte boundary or on a four-byte boundary in memory. Without a buffer
mechanism, programmers would have to make sure that their data buffers were
correctly aligned. Many programmer errors would result, and programs would
not be portable to UNIX systems running on machines with stricter address

., . alignment propecties. By copying data from user buffers to system buffers (and
T, i,

ce vers ”}h:hkemel_ eliminates the need for special alignment of user buffers,
A w4 L AEN

e



35 ADVANTAGES AND DlSADVANﬂAGES_OF THE BUFFER CACHE 57

making user programs simpler and more portable.

o Use of the buffer cache can reduce the amount of disk traffic, thereby increasing
overall system throughput and decreasing response time. Processes reading
from the file system may find data blocks in the cache and avoid the need for
disk I/0. The kernel frequently uses “delayed write” to avoid unnecessary disk
writes, leaving the block in the buffer cache and hoping for a cache hit on the
block. Obviously, the chances of a cache hit are greater for systems with many
buffers. However,éhe number of buffers a system can profitably configure is
constrained by the amount of memory that should be kept available for
executing processes: if too mueh memory is used for buffers, the system may
slow down because of excessive process swapping or pagin

o The buffer algorithms help insure file system integrity, because they maintain a
common, single image of disk blocks contained in the cache. If two processes
simultaneously attempt to manipulate one disk block the buﬂ'er algorlthms
(getblk for example) serialize their access, prev rru

o Reduction of disk traffic is important for good throughput and response time,
but the cache strategy also introduces several disadvantages. E@nce the kernel
does not immediately write data to the disk for a’ delayed write, the system is
vulnerable to crashes that leave disk data in an incorrect state. Although recent
system implementations have reduced the damage caused by catastrophic
2vents, the basic problem remains: A user issuing a write system call is never
sure when the data finally makes its way to disk.*

. Else of the buffer cache requires an extra.data copy when reading and writing to
and from user proccssw;l A process writing data copies the data into the kernel,
and the kernel copies the data to disk; a process reading data has the data read
from disk into the kernel ,and from the kernel to the user process. When
transmitting large amounts of data, the extra copy slows down performance, but
when transmitting small amounts of data, it improves performance because the
kernel buffers the data (using algorithms getblk and delayed write) until it is
economical to transmit to or from the disk.

3.6 SUMMARY

This chapter has presented the structure of the buffer cache and the various
methods by which the kernel locates blocks in the cache. The buffer algorithms
combine several simple ideas to provide a sophisticated caching mechanism. The
kernel uses the least-recently-used replacement algorithm to keep blocks in the

4. The standard 1/0 package available to C language programs includes an fflush call. This function
call flushes data from buffers in the user address space (part of the package) into the kernel.
However, the user still does not know when the kernel writes the data to the disk.



58 THE BUFFER CACHE

buffer cache, assuming that blocks that were recently accessed are likely to be
accessed again soon. The order that the buffers appear on the free list specifies the
order in which they were last used. Other buffer replacement algorithms, such as
first-in-first-out or least-frequently-used, are either more complicated to implement
or result in lower cache hit ratios. The.hash function and hash queues enable the
kernel to find particular blocks quickly, and use of doubly linked lists makes it easy
. to'remove buffers from the lists.

The kernel identifies the block it needs by supplying a logical device number
and block number. The algorithm getblk searches the buffer cache for a block and,
if the buffer is present and free, locks the buffer and returns it. If the buffer is
locked, the requesting process sleeps until it becomes free. The locking mechanism
ensures that only one process at a_time manipulates a buffer. If the block is not in
the cache, the kernel reassigns a free buffer to the block, locks it and returns it.
The algorithm bread allocates a buffer for a block and reads the data into the
buffer, if necessary. The algorithm bwrite copies data into a previously allocated
buffer. If, in execution of certain higher-level algorithms, the kernel determines
that it is not necessary to copy the data immediately to disk, it marks the buffer
“delayed write” to avoid unnecessary I/0. Unfortunately, the “delayed write”
. scheme means that a process is never sure when the data is physically on disk. If
the kernel writes data synchronously to disk, it invokes the disk driver to write the
block to the file system and waits for an 1/0 completion interrupt.

The kernel uses the buffer cache in many ways. It transmits data between
- application programs and the file system via the buffer cache, and it transmits
auxiliary system data such as inodes between higher-level kernel algorithms and the
file system. It also uses the buffer cache when reading programs into memory for
execution. The following chapters will describe many algorithms that use the
procedures described in this chapter. Other algorithms that cache inodes and pages
of memory also use techniques similar to those described for the buffer cache.

3.7 EXERCISES

1. Consider the hash function in Figure 3.3. The best hash function is one that
distributes the blocks uniformly over the set of hash queues. What would be an
optimal hashing function? Should a hash function use the logical device number in its
calculations? _

2. In the algorithm getblk, if the kernel removes a buffer from the free list, it must raise
the processor priority level to block out interrupts before checking the free list. Why?

* 3. In algorithm getblk, the kernel must raise the processor priority level to block out
interrupts before checking if a block is busy. (This is not shown in the text) Why?

4. In algorithm brelse, the kernel enqueues the buffer at the head of the free list if the
buffer contents are invalid. If the contents are invalid, should the buffer appear on a
‘hash queue?

5. Suppose the kernel does a delayed write of a block. What happens when another

" process takes that block from its hash queue? From the free list?



3.7

* 6.

10.

1.

12.

EXERCISES 59

If several processes contend for a buffer, the kernel guarantees that none of them sleep
forever, but it does not guarantee that a process will not be starved out from use of a
buffer. Redesign getblk so that a process is guaranteed eventual use of a buffer.
Redesign the algorithms for getblk and brelse such that the kernel does not follow a
least-recently-used scheme but a first-in-first-out scheme. Repeat this problem using a
least-frequently-used scheme.

Describe a scenario where the buffer data is already valid in algorithm bread.

Describe the various scenarios that can happen in algorithm breada. What happens
on the next invocation of bread or breada when the current read-ahead block will be
read? In algorithm breada, if the first or second block are not in the cache, the later
test to see if the buffer data is valid implies that the block could be in the buffer pool.
How is this possible? ‘

Describe an algorithm that asks for and receives any free buffer from the buffer pool.
Compare this algorithm to getblk.

Various system calls such as umount and sync (Chapter 5) require the kernel to flush
to disk all buffers that are “delayed write” for a particular file system. Describe an
algorithm that implements a buffer flush. What happens to the order of buffers on the
free list as a result of the flush operation? How can the kernel be sure that no other
process sneaks in and writes a buffer with delayed write to the file system while the
flushing process sleeps waiting for an 1/0 completion?

Define system response time as the average time it takes to complete a system call.
Define system throughput as the number of processes the system can execute in a
given time period. Describe how the buffer cache can help response time. Does it
necessarily help system throughput?



INTERNAL |
REPRESENTATION OF FILES

As observed in Chapter 2, every file on a UNIX system has a unique inode. The
inode contains the information necessary for a process to access a file, such as file
ownership, access rights, file size, and location of the file’s data in the file system.
Processes access files by a well defined set of system calls and specify a file by a
character string that is the path name. Each path name uniquely specifies a file,
and the kernel converts the path name to the file’s inode.

This chapter describes the internal structure of files in the UNIX system, and
the next chapter describes the system call interface to files. Section 4.1 examines
the inode and how the kernel manipulates it, and Section 4.2 examines the internal
structure of regular files and how the kernel reads and writes their data. Section
4.3 investigates the structure of directories, the files that allow the kernel to
organize the file system as a hierarchy of files, and Section 4.4 presents the
algorithm for converting user file names to inodes. Section 4.5 gives the structure
of the super block, and Sections 4.6 and 4.7 present the algorithms for assignment
of disk inodes and disk blocks to files. Finally, Section 4.8 talks about other file
types in the system, namely, pipes and device files.

The algorithms described in this chapter occupy the layer above the buffer
cache algorithms explained in the last chapter (Figure 4.1). The algorithm iget
returns a previously identified inode, possibly reading it from disk via the buffer
cache, and the algorithm iput releases the inode. The algorithm bmap sets kernel
parameters for accessing a file. The algorithm namei converts a user-level path




4.0 ~ INTERNAL REPRESENTATION OF FILES 61

Lower Level File System Algorithms

namei

alloc free| ialloc ifree

iget iput bmap

buffer allocation algorithms

getblk  brelse bread breada bwrite

Figure 4.1. File System Algorithms

name to-an inode, using the algorithms iget, iput, and bmap. A)gorithms alioc and
free allocate and free disk blocks for files, and algorithms ialloc and ifree assign
and free inodes for files.

4.1 INODES

4.1.1 Definition

Inodes exist in a static form on disk, and the kernel reads them into an in-core
inode to manipulate them. Disk inodes consist of the following fields:

o File owner identifier. Ownership is divided between an individual owner and a
“group” owner and defines the set of users who have access rights to a file. The
superuser has access rights to all files in the system.

e File type. Files may be of type regular, directory, character or block special, or
FIFO (pipes).

¢ File access permissions. The system protects files according to three classes:
the owner and the group owner of the file, and other users; each class has access
rights to read, write and execute the file, which can be set individually. Because
directories cannot be executed, execution permission for a directory gives the
right to search the directory for a file name. ‘

o File access times, giving the time the file was last modified, when it was last
accessed, and when the inode was last modified.



62 INTERNAL REPRESENTATION OF FILES

¢ Number of links to the file, representing the number of names the file has in the
directory hierarchy. Chapter 5 explains file links in detail.

e Table of contents for the disk addresses of data in a file. Although users treat
the data in a file as a logical stream of bytes, the kernel saves the data in
discontiguous disk blocks. The inode identifies the disk blocks that contain the
file’s data.

o File size. Data in a file is addressable by the number of bytes from the
beginning of the file, starting from byte offset 0, and the file size is 1 greater
than the highest byte offset of data in the file. For example, if a user creates a
file and writes only 1 byte of data at byte offset 1000 in the file, the size of the
file is 1001 bytes.

The inode does not specify the path name(s) that access the file.

owner mjb
group os
type regular file
perms rwxr-xr-x
accessed Oct 23 1984 1:45 P.M.
modified Oct 22 1984 10:30 A M.
inode Oct 23 1984 1:30 P.M.
size 6030 bytes
disk addresses

Figure 4.2. Sample Disk Inode

Figure 4.2 shows the disk inode of a sample file. This inode is that of a
regular file owned by “mjb,” which contains 6030 bytes. The system permits
“mjb” to read, write, or execute the file; members of the group “os™ and all other
users can only read or execute the file, not write it. The last time anyone read the
file was on October 23, 1984, at 1:45 in the afternoon, and the last time anyone
wrote the file was on October 22, 1984, at 10:30 in the morning. The inode was
last changed on October 23, 1984, at 1:30 in the afternoon, although the data in
the file was not written at that time. The kernel encodes the above information in
the inode. Note the distinction between writing the contents of an inode to disk
and writing the contents of a file to disk. The contents of a file change only when
writing it. The contents of an inode change when changing the contents of a file or
when changing its owner, permission, or link settings. Changing the contents of a



4.1 INODES 63

file automatically implies a change to the inode, but changing the inode does not
imply that the contents of the file change.

The in-core copy of the inode contains the following fields in addition to the
fields of the disk inode:

o The status of the in-core inode, indicating whether

— the inode is locked,

— a process is waiting for the inode to become unlocked,

— the in-core representation of the inode differs from the disk copy as a result
of a change to the data in ¢he inode,

— the in-core representation of the file differs from the disk copy as a result of
a change to the file data,

— the file is a mount point (Section 5.15).

e The logical device number of the file system that contains the file.

e The inode number. Since inodes are stored in a linear array on disk (recall
Section 2.2.1), the kernel identifies the number of a disk inode by its position in
the array. The disk inode does not need this field.

o Pointers to other in-core inodes. The kernel links inodes on hash queues and on
a free list in the same way that it links buffers on buffer hash queues and on the
buffer free list. A hash queue is identified according to the inode’s logica)
device number and inode number. The kernel can contain at most one in-core
copy of a disk inode, but inodes can be simultaneously on a hash queue and on
the free list.

o A reference count, indicating the number of instances of the file that are active
(such as when opened).

Many fields in the in-core inode are analogous to fields in the buffer header, and
the management of inodes is similar to the management of buffers. The inode lock,
when sct, prevents other processes from accessing the inode; other processes set a
flag in the inode when attempting to access it to indicate that they should be
awakened when the lock is released. The kernel sets other flags to indicate
discrepancies between the disk inode and the in-core copy. When the kernel needs
to record changes to the file or to the inode, it writes the in-core copy of the inode
to disk after examining these flags.

The most striking difference between an in-core inode and a buffer header is the
in-core reference count, which counts the number of active instances of the file. An
inode is active when a process allocates it, such as when opening a file. An inode is
on the free list only if its reference count is 0, meaning that the kernel can
reallocate the in-core inode to another disk inode. The free list of inodes thus
serves as a cache of inactive inodes: If a process attempts to access a file whose
inode is not currently in the in-core inode pool, the kernel reallocates an in-core
inode from the free list for its use. On the other hand, a buffer has no reference
count; it is on the free list if and only if it is unlocked.



64 INTERNAL REPRESENTATION OF FILES

algorithm iget

input: file system inode number
output: locked inode

{

while (not done)

if (inode in inode cache)
.
~ - if (inode locked)

sleep (event inode becomes unlocked);
} continue; /* logp back to while */
/* special processing for mount points (Chapter 5) */
if (inode on inode free list)
remove from free list;
increment inode reference count;
return (inode);

}

/* inode not in inode cache */
if (n6 inodes on free list)
return(error);

remove new inode from free list;

reset inode number and file system;

remove inode from old hash queue, place on new one;
. read inode from disk (algorithm bread);

initialize inode (e.g. reference count to 1);

return(inode);

Figure 4.3. Algorithm for Allocation of In-Core Inodes

4.1.2 Accessing Inodes

The kernel identifies particular inodes by their file system and inode number and
allocates in-core inodes at the request of higher-level algorithms. The algorithm
iget allocates an in-core copy of an inode (Figure 4.3); i. is almost identical to the
algorithm getblk for finding a disk block in the buffer cache. The kernel maps the
device number and inode number into a hash queue and searches the queue for the
inode. If it cannot find the inode, it allocates one from the free list and locks it.
The kernel then prepares to read the disk copy of the newly accessed inode into the
in-core copy. It already knows the inode number and logical device and computes
the logical disk block that contains the inode according to how many disk inodes fit
into a disk block. The computation follows the formula



4.1 INODES 3

block num = ((inode number — 1) / number of inodes per block) +
start block of inode list

where the division operation returns the integer part of the quotient. For example,
assuming that block 2 is the beginning of the inode list and that there are 8 inodes
per block, then inode number 8 is in disk block 2, and inode number 9 is in disk
block 3. If there are 16 inodes in a disk block, then inode numbers 8 and 9 are in
disk block 2, and inode number 17 is the first inode in disk block 3.

When the kernel knows the device and disk block number, it reads the block
using the algorithm bread (Chapter 2), then uses the following formula to compute
the byte offset of the inode in the block:

((inode number — 1) modulo (number of inodes per block)) * size of disk inode

For example, if each disk inode occupies 64 hytes and there are 8 inodes per disk
block, then inode number 8 starts at byte offset 448 in the disk block. The kernel
removes the in-core inode from the free list, places it on the correct. hash queus,
and sets its in-core reference count to 1. It copies the file type, owner fields,
permission settings, link count, file size, and the table of contents from the disk
_inode to the in-core inode, and returns a locked inode.

The kernel manipulates the inode lock and reference count independently. The
lock is set during execution of a system call to prevent other processes from
accessing the inode while it is in use (and possibly inconsistent). The kernel
releases the lock at the conclusion of the system call: an inode is never locked
across system calls. The kernel increments the reference count for every active
reference to a file. For example, Section 5.1 will show that it increments the inode
reference count when a process opens a file. It decrements the reference count only
when the reference becomes inactive, for example, when a process closes a file.
The reference count thus remains set across multiple system calls. The lock is free
between system calls to allow processes to share simultaneous access to a file; the
reference count remains set between system calls to prevent the kernel from
reallocating an active in-core inode. Thus, the kernel can lock and unlock an
allocated inode independent of the value of the reference count. System calls other
than open allocate and release inodes, as will be seen in Chapter 5.

Returning to algorithm iget, if the kernel attempts to take an inode from the
free list but finds the free list empty, it reports an error. This is different from the
philosophy the kernel follows for disk buffers, where a process sleeps until a buffer
becomes free: Processes have control over the allocation of inodes at user level via
execution of open and close system calls, and consequently the kernel cannot
guarantee when an inode will become available. Therefore, a process that goes to
sleep waiting for a free inode to become available may never wake up. Rather than
leave such a process “hanging,” the kernel fails the system call. However,
processes do not have such control over buffers: Because a process cannot keep a
buffer locked across system calls, the kernel can guarantee that a buffer will
become free soon, and a process therefore sleeps until one is available.



/

66 INTERNAL REPRESENTATION OF FILES

The preceding paragraphs cover the case where the kernel allocated an inode

‘that was not in the inode cache. If the inode is in the cache, the process (A) would

find it on its hash queue and check if the inode was currently locked by another
process (B). If the inode is locked, process A sleeps, setting a flag in the in-core
inode to indicate that it is waiting for the inode to become free. When process B
later unlocks the inode, it awakens all processes (including process A) waiting for
the inode to become free. When process A is finally able to use the inode, it locks
the inode so that other processes cannot allocate it. If the reference count was
previously 0, the inode also appears on the free list, so the kernel removes it from
there: the inode is no longer free. The kernel increments the inode reference count
and returns a locked inode.

To summarize, the iget algorithm is used toward the beginning of system calls
when a process first accesses a file. The algorithm returns a locked inode structure
with reference count 1 greater than it had previously been. The in-core inode
contains up-to-date information on the state of the file. The kernel unlocks the
inode before returning from the system call so that other system calls can access
the inode if they wish. Chapter 5 treats these cases in greater detail.

algorithm ifmt /* release (put) access to in—core inode */
input: pointer to in—core inode
output: none

lock inode if not already locked;
decrement inode reference count;
if (reference count === ()
{
if (inode link count == 0)
{
free disk blocks for file (algorithm free, section 4.7);
set file type to 0;
free inode (algorithm ifree, section 4.6);

if (file accessed or inode changed or file changed)
update disk inode;
put inode on free list;

release inode lock;

Figure 4.4. Releasing an Inode



4.1 INODES 67

4.1.3 Releasing Inodes

When the kernel releases an inode (algorithm iput, Figure 4.4), it decrements its
in-core reference count. If the count drops to 0, the¢ kernel writes the inode to disk
if the in-core copy differs from the disk copy. They differ if the file data has
changed, if the file access time has changed, or if the file owner or access
permissions have changed. The kernel places the inode on the free list of inodes,
effectively caching the inode in case it is needed again soon. The kernel may also
release all data blocks associated with the file and free the inode if the number of
links to the file is 0.

4.2 STRUCTURE OF A REGULAR FILE

As mentioned above, the inode contains the table of contents to locate a file’s data
on disk. Since each block on a disk is addressable by number, the table of contents
consists of a set of disk block numbers. If the data in a file were stored in a
contiguous section of the disk (that is, the file occupied a linear sequence of disk
blocks), then storing the start block address and the file size in the inode would
suffice to access all the data in the file. However, such an allocation strategy would
not allow for simple expansion and contraction of files in the file system without
running the risk of fragmenting free storage area on the disk. Furthermore, the
kernel would have to allocate and reserve contiguous space in the file system before
allowing operations that would increase the file size.

............ File A File B File C
40 50 6 70
Block Addresses
------------ File A Free File C File B
40 50 60 70 81

Block Addresses

Figure 4.5. Allocation of Contiguous Files and Fragmentation of Free Space

For example, suppose a user creates three files, A, B and C, each consisting of
10 disk blocks of storage, and suppose the system allocated storage for the three
files contiguously. If the user then wishes to add S blocks of data to the middle file,
B, the kernel would have to copy file B to a place in the file system that had room
for 15 blocks of storage. Aside from the expense of such an operation, the disk



68 INTERNAL REPRESENTATION OF FILES

blocks previously occupied by file B’s data would be unusable except for files
smaller than 10 blocks (Figure 4.5). The kernel could minimize fragmentation of
storage space by periodically running garbage collection procedures to compact
available storage, but that would place an added drain onprocessing power.

For greater flexibility, the kernel allocates file space one block at a time and
allows the data in a file to be spread throughout the file system. But this allocation
scheme complicates the task of locating the data. The table of contents could
consist of a list of block numbers such that the blocks contain the data belonging to
the file, but simple calculations show that a linear list of file blocks in the inode is
difficult to manage. If a logical block contains 1K bytes, then a file consisting of
10X bytes would require an index of 10 block numbers, but a file containing 100K
bytes would require an index of 100 block numbers. Either the size of the inode
would vary according to the size of the file, or a relatively low limit would have to
be placed on the size of a file.

To keep the inode structure small yet still allow large files, the table of contents
of disk blocks conforms to that shown in Figure 4.6. The System V UNIX system
runs with 13 entries in the inode table of contents, but the principles are
independent of the number of entries. The blocks marked “direct” in the figure
contain the numbers of disk blocks that contain real data. The block marked
“single indirect” refers to a block that contains a list of direct block numbers. To
access the data via the indirect block, the kernel must read the indirect block, find
the appropriate direct block entry, and then read the direct block to find the data.
The block marked “double indirect” contains a list of indirect block numbers, and
the block marked “triple indirect™ contains a list of double indirect block numbers.

In principle, the method could be extended to support “quadruple indirect
blocks,” “quintuple indirect blocks,” and so on, but the current structure has
sufficed in practice. Assume that a logical block on the file system holds 1K bytes
and that a block number is addressable by a 32 bit (4 byte) integer. Then a block
can hold up to 256 block r[umbers. The maximum number of bytes that could be
held in a file is calculated (Figure 4.7) at well over 16 gigabytes, using 10 direct
blocks and 1 indirect, 1 double indirect, and 1 triple indirect block in the inode.
Given that the file size field in the inode is 32 bits, tue size of a file is effectively
limited to 4 gigabytes (2°?).

Processes access data in a file by byte offset. They work in terms of byte counts
and view a file as a stream of bytes starting at byte address 0 and going up to the
size of the file. The kernel converts the user view of bytes into a view of blocks:
The file starts at logical block O and .continues to a logical block number
corresponding to the file size. The kernel accesses the inode and converts the
logical file block into the appropriate disk block. Figure 4.8 gives the algorithm
bmap for converting a file byte offset into a physical disk block.

Consider the block layout for the file in Figure 4.9 and assume that a disk block
contains 1024 bytes. If a process wants to access byte offset 9000, the kernel
_ calculates that the byte is in direct block 8 in the file (counting from 0). It then
accesses block number 367; the 808th byte in that block (starting from 0) is byte



4.2

Inode

STRUCTURE OF A REGULAR FILE

direct 0

Data
Blocks

direct 1

direct )

direct 3

direct 4

direct 5

direct 6

direct
7

direct 8

direct 9

single
indirect

double
indirect

L3

triple
indirect

Figure 4.6. Direct and Indirect Blocks in Inode

N

69



70 INTERNAL REPRESENTATION OF FILES

10 direct blocks with 1K bytes each = 10K bytes
1 'indirect block with 256 direct blocks = 256K bytes
1 double indirect block with 256 indirect blocks = 64M bytes
1 triple indirect block with 256 double indirect blocks = 16G bytes

Figure 4.7. Byte Capacity of a File — 1K Bytes Per Block

algorithm bmap  /* block map of logical file byte offset to file system block */
input: (1) inode

(2) byte offset
output: (1) block numbser in file system

(2) byte offset into block

(3) bytes of I/0 in block

(4) read ahead block number

calculate logical block number in file from byte offset;

calculate start byte in block for 1/0; /* output 2 */
calculate number of bytes to copy to user; /* output 3 */
check if read—ahead applicable, mark inode; /* output 4 */

determine ‘evel of indirection;
while (not at necessary level of indirection)

calculate index into inode or indirect block from
logical block number in file;

get disk block number from inode or indirect block;
release buffer from previous disk read, if any (algorithm brelse);’
if (no more levels of indirection)

return (block number);
read indirect disk block (algorithy bread);
adjust logical block number in file according to level of indirection;

)

Figure 4.8. Conversion of Byte Offset to Block Number in File System

9000 in the file. If a process wants to access byte offset 350,000 in the file, it must
access a double indirect block, number 9156 in the figure. Since an indirect block
has room for 256 block numbers, the first byte accessed via the double indirect
block is byte number 272,384 (256K + 10K); byte number 350,000 in a file is
therefore byte number 77,616 of the double indirect block. Since each single
indirect block accesses 256K bytes, byte number 350,000 must be in the Oth single
indirect block of the double indirect block — block number 331. Since each direct
block in a single indirect block contains 1K bytes, byte number 77,616 of a single



42 STRUCTURE OF A REGULAR FILE - n

4096

228

45423

11111

367

101 data block

367

0

428 331

3333
91356 333
824 double indirect 331 data block
single indirect

9156

Figure 4.9. Block Layout of a Sample File and its Inode

indirect block is in the 75th direct block in the single indirect block — block
number 3333. Finally, byte number 350,000 in the file is at byte number 816 in
block 3333.

Examining Figure 4.9 more closely, several block entries in the inode are 0,
meaning that the logical block entries contain no data. This happens if no process
ever wrote data into the file at any byte offsets corresponding to those blocks and
hence the block numbers remain at their initial value, 0. No disk space is wasted
for such blocks. Processes can cause such a block layout in a file by using the Iseek
and write system calls, as described in the next chapter. The next chapter also
describes how the kernel takes care of read system calls that access such blocks.

The conversion of a large byte offset, particularly one that is referenced via the
triple indirect block, is an arduous procedure that could require the kernel to access
three disk blocks in addition to the inode and data block. Even if the kernel finds



72 INTERNAL REPRESENTATION OF FILES

the blocks in the buffer cache, the operation is still expensive, because the kernel
must make multiple requests of the buffer cache and may have to sleep awaiting
locked buffers. How effective is the algorithm in practice? That depends on how
the system is used and whether the user community and job mix are such that the
kernel accesses large files or small files more frequently. It has been observed
[Mullender 84], however, that most files on UNIX systems contain less than 10K
bytes, and many contain less than 1K bytes!' Since 10K bytes of a file are stored in
direct blocks, most file data can be accessed with one disk access. So in spite of the
fact that accessing large files is an expensive operation, accessing common-sized
files is fast.

Two extensions to the inode structure just described attempt to take advantage
of file size characteristics. A major principle in the 4.2 BSD file system
implementation [McKusick 84] is that the more data the kernel can access on the
disk in a single operation, the faster file access becomes. That argues for having
larger logical disk blocks, and the Berkeley implementation allows logical disk
blocks of 4K or 8K bytes. But having larger block sizes on disk increases block
fragmentation, leaving large portions of disk space unused. For instance, if the
logical block size is 8K bytes, then a file of size 12K bytes uses 1 complete block
and half of a second block. The other half of the second block (4K bytes) is
wasted; no other file can use the space for data storage. If the sizes of files are
such that the number of bytes in the last block of a file is uniformly distributed,
then the average wasted space is half a block per file; the amount of wasted disk
space can be as high as 45% for a file system with logical blocks of size 4K bytes
[McKusick 84]. The Berkeley implementation remedies the situation by allocating
a block fragment to contain the last data in a file. One disk block can contain
fragments belonging to several files. An exercise in Chapter 5 explores some details
of the implementation.

The second extension to the classic inode structure described here is to store file
data in the inode (see [Mullender 84]). By expanding the inode to occupy an
entire disk block, a small portion of the block can be used for the inode structures
and the remainder of the block can store the entire file, in many cases, or the end
of a file otherwise. The main advantage is that only one disk access is necessary to
get the inode and its data if the file fits in the inode block.

1. For a sample of 19,978 files, Mullender and Tannenbaum say that approximately 85% of the files
were smaller than 8K bytes and that 48% were smaller than 1K bytes. Although these percentages
will vary from one installation to the next, they are representative of many UNIX systems.



43 DIRECTORIES 73

4.3 DIRECTORIES

Recall from Chapter 1 that directories are the files that give the file system its
hierarchical structure; they play an important role in conversion of a file name to
an inode number. A directory is a file whose data is a sequence of entries, each
consisting of an inode number and the name of a file contained in the directory. A
path name is a null terminated character string divided into separate components
by the slash (“/”) character. Each component except the last must be the name of
a directory, but the last component may be a non-directory file. UNIX System V
restricts component names to a maximum of 14 characters; with a 2 byte entry for
the inode number, the size of a directory entry is 16 bytes.

Byte Offset  Inode Number  File Names
in Directory (2 bytes)
0 83
16 2 .
32 1798 init
48 1276 fsck
64 85 clri
80 1268 motd
96 1799 mount
112 88 mknod
128 2114 passwd
144 1717 umount
160 1851 checklist
176 92 fsdblb
192 84 config
208 1432 getty
224 0 crash
240 95 mkfs
256 188 inittab

Figure 4.10. Directory Layout for /etc

Figure 4.10 depicts the layout of the directory “etc”. Every directory contains
the file names dot and dot-dot (**.” and “..”) whose inode numbers are those of the
directory and its parent directory, respectively. The inode number of “.” in “/etc”
is located at offset 0 in the file, and its value is 83. The inode number of “..” is
located at offset 16, and its value is 2. Directory entries may be empty, indicated
by an inode number of 0. For instance, the entry at address 224 in “/etc” is
empty, although it once contained an entry for a file named “crash”. The program
mkfs initializes a file system so that “.” and “..” of the root directory have the root
inode number of the file system.



74 INTERNAL REPRESENTATION OF FILES

The kernel stores data for a directory just as it stores data for an ordinary file,
using the inode structure and levels of direct and indirect blocks. Processes may
read directories in the same way they read regular files, but the kernel reserves
exclusive right to write a directory, thus insuring its correct structure. The access
permissions of a directory have the following meaning: read permission on a
directory allows a process to read a directory; write permission allows a process to
‘create new directory entries or remove old ones (via the creat, mknod, link, and
unlink system calls), thereby altering the contents of the directory; execute
permission allows a process to search the directory for a file name (it is meaningless

cxecute a directory). Exercise 4.6 explores the difference between reading and
searching a directory.

4.4 CONVERSION OF A PATH NAME TO AN INODE

The initial access to a file is by its path name, as in the open, chdir (change
directory), or link system calls. Because the kernel works internally with inodes
rather than with path names, it converts the path names to inodes to access files.
The algorithm namei parses the path name one component at a time, converting
each component into an inode based on its name and the directory being searched,
and eventually returns the inode of the input path name (Figure 4.11).

Recall from Chapter 2 that every process is associated with (resides in) a
current directory; the u area contains 2 pointer to the current directory inode. The
current directory of the first process in the system, process 0, is the root directory.
The current directory of every other process starts out as the current directory of its
parent process at the time it was created (see Section 5.10). Processes change their
current directory by executing the chdir (change directory) system call. All path
name searches start from the current directory of the process unless the path name
starts with the slash character, signifying that the search should start from the root
directory. In either case, the kernel can easily find the inode where the path name
search starts: The current directory is stored in the process u area, and the system
root inode is stored in a global variable.2

Namei uses intermediate inodes as it parses a path name; call them working
inodes. The inode where the search starts is the first working inode. During each
iteration of the namei loop, the kernel makes sure that the working inode is indeed
that of a directory. Otherwise, the system would violate the assertion that non-
directory files can only be leaf nodes of the file system tree. The process must also
have permnsslon to search the directory (read permission is insufficient). The user
ID of the process must match the owner or group ID of the file, and execute

2. A process can execute the chroot system call to change its notion of the file system root. The
",changed root is stored in the u area.



44 CONVERSION OF A PATH NAME TO AN INODE 75

algorithm namei /* convert path name to inode */
input: path name
output: locked inode
{
if (path name starts from root)
working inode = root inode (algorithm iget);
else
working inode = current directory inode (algorithm iget):

while (there is more path name)
{
read next path name component from input;
verify that working inode is of directory, access permissions OK;
if (working inode is of root and component is "..")
continue; /* loop back to while */
read directory (working inode) by repeated use of algorithms
bmap, bread and brelse;
if (component matches an entry in directory (working inode))
{
get inode number for matched component;
release working inode (algorithm iput);
working inode = inode of matched component (algorithm iget);
)
else /* component not in directory */
return (no inode);

}

return (working inode);

Figure 4.11. Algorithm for Conversion of a Path Name to an Inode

permission must be granted, or the file must allow search to all users. Otherwise
the search fails. .

The kernel does a linear search of the directory file associated with the working
inode, trying to match the path name component to 2 directory entry name.
Starting at byte offset 0, it converts the byte offset in the directory to the
appropriate disk block according to algorithm bmap and reads the block using
algorithm bread. It searches the block for the path name component, treating the
contents of the block as a sequence of directory entries. If it finds a match, it
records the inode number of the matched directory entry, releases the block
(algorithm brelse) and the old working inode (algorithm iput), and allocates the
inode of the matched component (algorithm iget). The new inode becomes the
working inode. If the kernel does not match the path name with any names in the
block, it releases the block, adjusts the byte offset by the number of bytes in a
block, converts the new offset to a disk block number (algorithm bmap), and reads



76 INTERNAL REPRESENTATION OF FILES

the next block. The kernel repeats the procedure until it matches the path name
component with a directory entry name, or until it reaches the end of the directory.

For example, suppose a process wants to open the file “/etc/passwd”. When the
kernel start. parsing the file name, it encounters *“/” and gets the system root
inode. Making root its current working inode, the kernel gathers in the string
“etc”. After checking that the current inode is that of a directory (“/”) and that
the process has the necessary permissions to search it, the kernel searches root for a
file whose name is “etc”: It accesses the data in the root directory block by block
and searches each block one entry at a time until it locates an entry for “etc”. On
finding the entry, the kernel releases the inode for root (algorithm iput) and
allocates the inode for “etc” (algorithm iget) according to the inode number of the
entry just found. After ascertaining that “etc” is a directory and that it has the
requisite search permissions, the kernel searches *“etc” block by block for a
directory structure entry for the file “passwd”. Referring to Figure 4.10, it would
find the entry for “passwd” as the ninth entry of the directory. On finding it, the
kernel releases the inode for “etc”, allocates the inode for “passwd”, and — since
the path name is exhausted — returns that inode.

It is natural to question the efficiency of a linear search of a directory for a path
name component. Ritchie points out (see page 1968 of [Ritchie 78b]) that a linear
search is efficient because it is bounded by the size of the directory. Furthermore,
early UNIX system_implementations did not run on machines with large memory
space, so there was heavy emphasis on simple algorithms such as linear search
schemes. More complicated search schemes could require a different, more
complex, directory structure, and would probably run more slowly on small
directories than the linear search scheme.

4.5 SUPER BLOCK

So far, this chapter has described the structure of a file, assuming that the inode
was previously bound to a file and that the disk blocks containing the data were
already assigned. The next sections cover how the kernel assigns inodes and disk
blocks. To understand those algorithms, let us examine the structure of the super
block.

The super block consists of the following fields:

the size of the file system,

the number of free blocks in the file system,

a list of free blocks available on the file system,

the index of the next free block in the free block list,
the size of the inode list,

the number of free inodes in the file system,

a list of free inodes in the file system,

the index of the next free inode in the free inode list,



4.5 SUPER BLOCK 77

o lock fields for the free block and free inode lists,
e 2 flag indicating that the super block has been modified.

The remainder of this chapter will explain the use of the arrays, indices and locks.
The kernel periodically writes the super block to disk if it had been modified so that
it is consistent with the data in the file system.

4.6 INODE ASSIGNMENT TO A NEW FILE

The kernel uses algorithm iget to allocate a known inode, one whose (file system
and) inode number was previously determined. In algorithm namei for instance,
the kernel determines the inode number by matching a path name component to a
name in a directory. Another algorithm, ialloc, assigns a disk inode to a newly
created file.

The file system contains a linear list of inodes, as mentioned in Chapter 2. An
inode is free if its type field is zero. When a process needs a new inode, the kernel
could theoretically search the inode list for a free inode. However, such a search
would be expensive, requiring at least one read operation (possibly from disk) for
every inode. To improve performance, the file system super block contains an array
to cache the numbers of free inodes in the file system.

Figure 4.12 shows the algorithm ialloc for assigning new inodes. For reason:c
cited later, the kernel first verifies that no other processes have locked access to the
super block free inode list. If the list of inode numbers in the super block is not
empty, the kernel assigns the next inode number, allocates a free in-core inode for
the newly assigned disk inode using algorithm iget (reading the inode from disk if
necessary), copies the disk inode to the in-core copy, initializes the fields in the
inode, and returns the locked inode. It updates the disk inode to indicate that the
inode is now in use: A non-zero file type field indicates that the disk inode is
assigned. In the simplest case, the kernel has a good inode, but race conditions
exist that necessitate more checking, as will be explained shortly. Loosely defined,
a race condition arises when several processes alter common data structures such
that the resulting computations depend on the order in which the processes
executed, even though all processes obeyed the locking protocol. For example, it is
implied here that a process could get a used inode. A race condition is related to
the mutual exclusion problem defined in Chapter 2, except that locking schemes
solve the mutual exclusion problem there but may not, by themselves, solve all race
conditions.

If the super block list of free inodes is empty, the kernel searches the disk and
places as many free inode numbers as possible into the super block. The kernel
reads the inode list on disk, block by block, and fills the super block list of inode
numbers to capacity, remembering the highest-numbered inode that it finds. Call
that inode the “remembered” inode; it is the last one saved in the super block. The
next time the kernel searches the disk for free inodes, it uses the remembered inode
as its starting point, thereby assuring that it wastes no time reading disk blocks



INTERNAL REPRESENTATION OF FILES

i’,algorithm ialloc /* allocate inode */
input:  file system

output: locked inode

{

while (not done)
if (super block locked)
{

sleep (event super block becomes free);
continue; /* while loop */

if (inode list in super block is empty)
{
lock super block;
get remembered inode for free inode search;
search disk for free inodes until super block full,
or no more free inodes (algorithms bread and brelse);
unlock super block;
wake up (event super block becomes free):
if (no free inodes found on disk)
return (no inode);
set remembered inode for next free inode search:
}
/* there are inodes in super block inode list */
get inode number from super block inode list;
get inode (algorithm iget);
if (inode not free after all) /e mey

write inode to disk;
release inode (algorithm iput);
“‘continue; /* while loop */

/* inode is free */

initialize inode;

write inode to disk;

decrement file system free inode count;
return (inode);

Figure 4.12. Algorithm for Assigning New Inodes




4.6 INODE ASSIGNMENT TO A NEW FILE 79

where no free inodes should exist. After gathering a fresh set of free inode
numbers, it starts the inode assignment algorithm from the beginning. Whenever
the kernel assigns a disk inode, it decrements the free inode count recorded in the
super block.

Super Block Free Inode List -

<..freeinodes 1 g3 | 48 <. empty ........ -
18 19 20 array 1
Tindcx
Super Block Free Inode List
..... freeinodes | g3 | cofe STRYL
18 19 20 array 2
Tindcx

(a) Assigning Free Inode from Middle of List

Super Block Free Inode List

Tindex “(remembered inode)
Super_Block Free Inode List

array 2
535 free inodes 476 475 471
< ------------------------------------------------------------------------------ r ----- >
48 49 50
index T

(b) Assigning Free Inode - Super Block List Empty

Figure 4.13. Two Arrays of Free Inode Numbers



80 INTERNAL REPRESENTATION OF FILES

Consider the two pairs of arrays of free inode numbers in Figure 4.13. If the
list of free inodes in the super block looks like the first array in Figure 4.13(a)
when the kernel assigns an inode, it decrements the index for the next valid inode
number to 18 and takes inode number 48. If the list of free inodes in the super
block looks like the first array in Figure 4.13(b), it will notice that the array is
empty and search the disk for free inodes, starting from inode number 470, the
remembered inode. When the kernel fills the super block free list to capacity, it
remembers the last inode as the start point for the next search of the disk. The
kernel assigns an inode it just took from the disk (number 471 in the figure) and
continues whatever it was doing.

algorithm ifree /* inode free */
input: file system inode number
output: none

increment file system free inode count;
if (super block locked)
return;
if (inode list full)
{

if (inode number less than remembered inode for search)
set remembered inode for search = input inode number;
)
else
store inode number in inode list;
return;

Figure 4.14. Algorithm for Freeing Inode

The algorithm for freeing an inode is much simpler. After incrementing the
total number of available inodes in the file system, the kernel checks the lock on the
super block. If locked, it avoids race conditions by returning immediately: The
inode number is not put into the super block, but it can be found on disk and is
available for reassignment. If the list is not locked, the kernel checks if it has room
for more inode numbers and, if it does, places the inode number in the list and
returns. If the list is full, the kernel may not save the newly freed inode there: It
compares the number of the freed inode with that of the remembered inode. If the
freed inode number is less than the remembered inode number, it “remembers” the
newly freed inode number. discarding the old remembered inode number from the
super block. The inode is not lost, because the kernel can find it by searching the
inode list on disk. The kernel maintains the super block list such that the last inode
it dispenses from the list is the remembered inode. Ideally, there should never be
free inodes whose inode number is less than the remembered inode number, but



4.6 INODE ASSIGNMENT TO A NEW FILE 81

35 free inodes ... | 476 | 475 | AL
4 J
remembered inode index*

(a) Original Super Block List of Free Inodes

499 free inodes 476 475 | 471
P R S RO R TR T ERREEEREEEEEEEES AR SRR S -
3 s 5
remembered inode ' T
index|

(b) Free Inode 499

free inodes 476 475 471
< ................................................................................... )
3 7 50
remembered inode T
index

(c) Free Inode 601

Figure 4.15. Placing Free Inode Numbers into the Super Block

exceptions are possible.

Consider two examples of freeing inodes. If the super block list of free inodes
has room for more free inode numbers as in Figure 4.13(a), the kernel places the
inode number on the list, increments the index to the next free inode, and proceeds.
But if the list of free inodes is full as in Figure 4.15, the kernel compares the inode
number it has freed to the remembered inode number that will start the next disk
search. Starting with the free inode list in Figure 4.15(a), if the kernel frees inode
499, it makes 499 the remembered inode and evicts number 535 from the free list.
If the kernel then frees inode number 601, it does not change the contents of the
free list. When it later uses up the inodes in the super block free list, it will search
the disk for free inodes starting from inode number 499, and find inodes 535 and
601 again.



82 INTERNAL REPRESENTATION OF FILES

Process A Process B Process C

Assigns inode 1
from super block

Sleeps while
reading inode (a)

Tries to assign inode
from super block

Super block empty (b)

Search for free
inodes on disk,
puts inode 1
in super block (c)

Inode I in core
Does usual activity

Completes search,
assigns another inode (d)

Assigns inode 1
from super block

I is in use!

‘ .
 Time Assign another inode (e)

Figure 4.16. Race Condition in Assigning Inodes

The preceding paragraph described the simple cases of the algorithms. Now
consider the case where the kernel assigns a new inode and then allocates an in-core
copy for the inode. The algorithm implies that the kernel could find that the inode
had already been assigned. Although rare, the following scenario shows such a case
(refer to Figures 4.16 and 4.17). Consider three processes, A, B, and C, and
suppose that the kernel, acting on behalf of process A, assigns inode I but goes to
sleep before it copies the disk inode into the in-core copy. Algorithms iger (invoked

3. As in the last chapter, the term “process” here will mean “the kernel, acting on behalf of o process.”




4.6 INODE ASSIGNMENT TO A NEW FILE 83

Time
(@) Il
® | empty ...
() 1)) frecinodes JILK
) J.). ). freeinodes Iy
V (e ALl freeinodes iy
\

Figure 4.17. Race Condition in Assigning Inodes (continued)

by ialloc) and bread (invoked by iget) give process A ample opportunity to go to
sleep. While process A is asleep, suppose process B attempts to assign a new inode
but discovers that the super block list of free inodes is empty. Process B searches
the disk for fre¢'inodes, and suppose it starts its search for free inodes at an inode
number lower than ‘that of the inode that A is assigning. It is possible for process
B to find inode I free on the disk since process A is still asleep, and the kernel does
not know that thelinode is about to be assigned. Process B, not realizing the
danger, completes its search of the disk, fills up the super block with (supposedly)
free inodes, assigns an inode, and departs from the scene. However, inode I is in
the super block free list of inode numbers. When process A wakes up, it completes
the assignment of inode I. Now suppose process C later requests an inode and
happens to pick inode I from the super block free list. When it gets the in-core
copy of the inode, it will find its file type set, implying that the inode was already ‘
assigned. The kernel checks for this condition and, finding that the inode has been
assigned, tries to assign a new one. Writing the updated inode to disk immediately
after its assignment in ialloc makes the chance of the race smaller, because the file.
type field will mark the inode in use. ' '



84 INTERNAL REPRESENTATION OF FILES

Locking the super block list of inodes while reading in a new set from disk
prevents other race conditions. If the super block list were not locked, a process
could find it empty and try to populate it from disk, occasionally sleeping while
waiting for I/0 completion. Suppose a second process also tried to assign a new
inode and found the list empty. It, too, would try to populate the list from disk.
At best, the two processes are duplicating their efforts and wasting CPU power. At
worst, race conditions of the type described in the previous paragraph would be
more frequent. Similarly, if a process freeing an inode did not check that the list is
locked, it could overwrite inode numbers already in the free list while another
process was populating it from disk. Again, the race conditions described above
would be more frequent. Although the kernel handles them satisfactorily, system
performance would suffer. Use of the lock on the super block free list prevents
such race conditions.

4.7 ALLOCATION OF DISK BLOCKS

When a process writes data to a file, the kernel must allocate disk blocks from the
file system for direct data blocks and, sometimes, for indirect blocks. The file
system super block contains an array that is used to cache the numbers of free disk
blocks in the file system. The utility program mkfs (make file system) organizes
the data blocks of a file system in a linked list, such that each link of the list is a
disk block that contains an array of free disk block numbers, and one array entry is
the number of the next block of the linked list. Figure 4.18 shows an example of
the linked list, where the first block is the super block free list and later blocks on
the linked list contain more Yree block numbers.

When the kernel wants to allocate a block from a file system (argorithm alloc,
Figure 4.19), it allocates the next available block in the super block list. Once
allocated, the block cannot be reallocated until it becomes free. If the allocated
block is the last available block in the super block cache, the kernel treats it as a
pointer to a block that contains a list of free blocks. It reads the block, populates
the super block array with the new list of block numbers, and then proceeds to use
the original block number. It allocates a buffer for the block and clears the buffer’s
data (zeros it). The disK block has now been assigned, and the kernel has a buffer
to work with. If the file system cdntains no free blocks, the calling process receives
an error. ,

If a process writes a lot of data to a file, it repeatedly asks the system for blocks
to store the data, but the ‘kernel assigns only one block at a time. The program
mkfs tries to organize the original linked list of free block numbers so that block
numbers dispensed to a file are near each other. This helps performance, because it
reduces disk seek time and latency when a process reads a file sequentially. Figure
4.18 depicts block numbers in a regular pattern, presumably based on the disk
rotation speed. Unfortunately, the order of block numbers on the free block linked
lists breaks down with heavy use as processes write files and remove them, because
block numbers enter and leave the free list at random. The kernel makes no



4.7 Allocation of Disk Blocks 85

super block list
1091106 [103 [100 | --o-vveveeernnnenens
|

211 {208 [205 [202] ---ooiieien o2

211
310 (307 304|301 [ -ooooeenn 214

310

409 | 406 | 403 | 400 313
|

!

Figure 4.18. Linked List of Free Disk Block Numbers

attempt to sort block humbers on the free list.

The algorithm free for freeing a block is the reverse of the one for allocating a
block. If the super block list is not full, the block number of the newly freed block
is placed on the super /block list. If, however, the super block list is full, the newly
freed block becomes a link block; the kernel writes the super block list into the
block and writes the block to disk. It then places the block number of the newly
freed block in the super block list: That block number is the only member of the
list.

Figure 4.20 shows a sequence of alloc and free operations, starting with one
entry on the super block free list. The kernel frees block 949 and places the block
number on the free list. It then allocates a block and removes block number 949
from the free list. Finally, it allocates a block and removes block number 109 from
the free list. Because the super block free list is now empty, the kernel replenishes
the list by copying in the contents of block 109, the next link on the linked list.
Figure 4.20(d) shows the full super block list and the next link block, block 211.

The algorithms for assigning and freeing inodes and disk blocks are similar in
that the kernel uses the super block as a cache containing indices of free resources,
block numbers, and inode numbers. It maintains a linked list of block numbers
such that every free block number in the file system appears in some element of the
linked list, but it maintains no such list of free inodes. There are three reasons for



86

INTERNAL REPRESENTATION OF FILES

algorithm alloc  /* file system block allocation */
input: file system number
output: buffer for new block

while (super block locked)

sleep (event super block not locked);
remove block from super block free list;
if (removed last block from free list)

lock super block;
read block just taken from free list (algorithm bread);
copy block numbers in block into super block;
release block buffer (algorithm brelse);
unlock super block;
| wake up processes (event super block not locked);
get buffer for block removed from super block list (algorithm getblk);
zero buffer contents;
decrement total count of free blocks;
mark super block modified;
return buffer;

Figure 4.19. Algorithm for Allocating Disk Block

the different treatment.

1.

The kernel can determine whether an inode is free by inspection: If the file
type field is clear, the inode is free. The kernel needs no other mechanism to
describe free inodes. However, it cannot determine whether a block is free
just by looking at it. It could not distinguish between a bit pattern that
indicates the block is free and data that happened to have that bit pattern.
Hence, the kernel requires an external method to identify free blocks, and
traditional implementations have used a linked list.

Disk blocks lend themselves to the use of linked lists: A disk block easily
holds large lists of free block numbers. But inodes have no convenient place
for bulk storage of large lists of free inode numbers.

Users tend to consume dlsk block resources more quickly than they consume
inodes, so the appérent lag in performance when searching the disk for free
inodes is not as critical as it would be for searching for free disk blocks.



438

OTHER FILE TYPES

super block list

109
]

....................................................

109

211

208 12051202 | cccveeiiiiiiiiiniiiiiin 112

super

(a) Original configuration
block list

109
]

049 | cveeiier s

COJQ
211

208120512021 voveiiiiii 112

(b) After freeing block number 949

super block list

109
i

....................................................

109

211

208 {205 [202 | oooovrevieiiiieiienins 112

(c) After assigning block number (949)

super block list

2111208 120512021 «ovevevieiiiiiiiiiiiiinns 112
]

211

344 13411338 (335 -vovirereiiininnns s 243

(d) After assigning block number (109)
replenish super block free list

Figure 4.20. Requesting and Freeing Disk Blocks




88 INTERNAL REPRESENTATION OF FILES

4.8 OTHER FILE TYPES

The UNIX system supports two other file types: pipes and special files. A pipe,
sometimes called a fifo (for “first-in-first-out”), differs from a regular file in that its
data is transient: Once data is read from a pipe, it cannot be read again. Also, the
data is read in the order that it was written to the pipe, and the system allows no
deviation from that order. The kernel stores data in a pipe the same way it stores
data in an ordinary file, except that it uses only the direct blocks, not the indirect
blocks. The next chapter will examine the implementation of pipes.

The last file types in the UNIX system are special files, including block device
special files and character device special files. Both types specify devices, and
therefore the file inodes do not reference any data. Instead, the inode contains two
numbers known as the major and minor device numbers. The major number
indicates a device type such as terminal or disk, and the minor number indicates
the unit number of the device. Chapter 10 examines special devices in detail.

4.9 SUMMARY

The inode is the data structure that describes the attributes of a file, including the
layout of its data on disk. There are two versions of the inode: the disk copy that
stores the inode information when the file is not in use and the in-core copy that
records information about active files. Algorithms ialloc and ifree control
assignment of a disk inode to a file during the creat, mknod, pipe, and unlink
system calls (next chapter), and the algorithms iget and iput control the allocation
of in-core inodes when a process accesses a file. Algorithm bmap locates the disk
blocks of a file, according to a previously supplied byte offset in the file. Directories
are files that correlate file name components to inode numbers. Algorithm namei
converts file names manipulated by processes to inodes, used internally by the
kernel. Finally, the kernel controls assignment of new disk blocks to a file using
algorithms alloc and free.

The data structures discussed in this chapter consist of linked lists, hash queues,
and linear arrays, and the algorithms that manipulate the data structures are
therefore simple. Complications arise due to race conditions caused by the
interaction of the algorithms, and the text has indicated some of these timing
problems. Nevertheless, the algorithms are not elaborate and illustrate the
simplicity of the system design.

The structures and algorithms explained here are internal to the kernel and are
not visible to the user. Referring to the overall system architecture (Figure 2.1),
the algorithms described in this chapter occupy the lower half of the file subsystem.
The next chapter examines the system calls that provide the user interface to the
file system, and 1t describes the upper half of the file subsystem that invokes the
internal algorithms described here.



49

EXERCISES 89

4.10 EXERCISES

1.

2.

6.

The C language convention counts array indices from 0. Why do inode numbers start
from 1 and not 0? '

If a process sleeps in algorithm iger when it finds the inode locked in the cache, why
must it start the loop again from the beginning after waking up?

Describe an algorithm that takes an in-core inode as input and updates the
corresponding disk inode.

The algorithms iget and iput do not require the processor execution level to be raised
to block out interrupts. What does this imply?

How efficiently can the loop for indirect blocks in bmap be encoded?

mkdir junk
foriin12345
do

echo hello > junk/$i
done

Is —Id junk

Is =1 junk
chmod —r junk
Is —Id junk

Is junk

Is =1 junk

cd junk

pwd

Is =1

echo *

cd ..

chmod +r junk
chmod —x junk
Is junk

Is —1 junk

cd junk

chmod +x junk ~

Figure 4.21. Difference between Read and Search Permission on Directories

Execute the shell command script in Figure 4.21. It creates a directory “junk® and
creates five files in the directory. After doing some control Is commands, the chmod
command turns off read permission for the directory. What happens when the various
Is commands are executed now? What happens after changing directory into “junk™?
After restoring read permission but removing execute (search) permission from “junk”,
repeat the experiment. What happens? What is happening in the kernel to cause this
behavior?

Given the current structure of a directory entry on a System V system, what is the
maximum number of files a file system can contain?



* 10.

14.

*1S.

INTERNAL REPRESENTATION OF FILES

UNIX System V allows a maximum of 14 characters for a path name component.
Namei truncates extra characters in a component. How should the file system and
respective algorithms be redesigned to allow arbitrary length component names?
Suppose a user has a private version of the UNIX system but changes it'so that a path
name component can consist of 30 characters; the private version of the operating
system stores the directory entries the same way that the standard operating system
does, except that the directory entries are 32 bytes long instead of 16. If the user
mounts the private file system on a standard system, what would happen in algorithm
namei when a process accesses a file on the private file system?

Consider the algorithm namei for converting a path name into an inode. As the search
progresses, the kernel checks that the current working inode is that of a directory. Is
it possible for another process to remove (unlink) the directory? How can the kernel
prevent this? The next chapter will come back to this problem.

. Design a directory structure that improves the efficiency of searching for path names

by avoiding the linear search. Consider two techniques: hashing and n-ary trees.

. Design a scheme that reduces the number of directory searches for file names by

caching frequently used names.

. Ideally, a file system should never contain a free inode whose inode number is less than

the “remember
false?

The super block is a disk block and contains other information besides the free block
list, as described in this chapter. Therefore, the super block free list cannot contain as
many free block numbers as can be potentially stored in a disk block on the linked list
of free disk blocks. What is the optimal number of free block numbers that should be
stored in a block on the linked list?

Discuss a system implementation that keeps track of free disk blocks with a bit map
instead of a linked list of blocks. What are the advantages and disadvantages of this
scheme?

inode used by ialloc. How is it possible for this assertion to be



SYSTEM CALLS
FOR THE FILE SYSTEM

The last chapter described the internal data structures for the file system and the
algorithms that manipulate them. This chapter deals with system calls for the file
system, using the concepts explored in the previous chapter. It starts with system
calls for accessing existing files, such as open, read, write, Iseek, and close, then
presents system calls to create new files, namely, creat and mknod, and then
examines the system calls that manipulate the inode or that maneuver through the
file system: chdir, chroot, chown, chmod, stat, and fstat. It investigates more
advanced system calls: pipe and dup are important for the implementation of pipes
in the shell; mount and umount extend the file system tree visible to users; /ink and
unlink change the structure of the file system hierarchy. Then, it presents the
notion of file system abstractions, allowing the support of various file systems as
long as they conform to standard interfaces. The last section in the chapter covers
file system maintenance. The chapter introduces three kernel data structures: the
file table, with one entry allocated for every opened file in the system, the user file
descriptor table, with one entry allocated for every file descriptor known to a
process, and the mount table, containing information for every active file system.

Figure 5.1 shows the relationship between the system calls and the algorithms
described previously. It classifies the system calls into several categories, although
some system calls appear in more than one category:

91



92 SYSTEM CALLS FOR THE FILE SYSTEM

File System Calls

;ti;xern Use of Assign File File | File Sys Tree
Desc namei inodes| Attributes | 1/0 |Structure Manipulation
open  stat
open creat link | creat
creat . . chown read .
d chdir unlink| mknod hmod - mount chdir
up ) chm write
ipe chroot mknod| link stat Iseek umount chown
é)lopse chown mount| unlink see
chmod umount

Lower Level File System Algorithms
namei

iget  iput ialloc ifree | alloc free bmap

buffer allocation algorithms
getblk  brelse bread breada bwrite

Figure 5.1. File System Calls and Relation to Other Algorithms

® System calls that return file descriptors for use in other system calls;

e System calls that use the namei algorithm to parse a path name;

e System calls that assign and free inodes, using algorithms ialloc and ifree;

e System calls that set or change the attributes of a file;

e System calls that do I/0 to and from a process, using algorithms alloc, free,
and the buffer allocation algorithms;

System calls that change the structure of the file system;

System calls that allow a process to change its view of the file system tree.

5.1 OPEN

The open system call is the first step a process must take to access the data in a
file. The syntax for the open system call is

fd = open(pathname, flags, modes);

where pathname is a file name, flags indicate the type of open (such as for reading
or writing), and modes give the file permissions if the file is being created. The
open system call returns an integer' called the user Jile descriptor. Other file



5.1 OPEN 93

operations, such as reading, writing, seeking, duplicating the file descriptor, setting
file /0 parameters, determining file status, and closing the file, use the file
descriptor that the open system call returns. o

The kernel searches the file system for the file name parameter using algorithm
namei (see Figure 5.2). It checks permissions for opening the file after it finds the
in-cor{ inode and allocates an entry in the file table for the open file. The file table
entry contains a pointer to the inode of the open file and a field that indicates the
byte offset in the file where the kernel expects the next read or write to begin. The
kernel initializes the offset to 0 during the open call, meaning that the initial read
or write starts at the beginning of a file by default. Alternatively, a process can
open a file in write-append mode, in which case the kernel initializes the offset to
the size of the file. The kernel allocates an entry in a private table in the process u
area, called the user file descriptor table, and notes the index of this entry. The
index is the file descriptor that is returned to the user. The entry in the user file
table points to the entry in the global file table.

algorithm open
inputs: file name
type of open
file permissions (for creation type of open)
output: file descriptor
{
convert file name to inode (algorithm namei);
if (file does not exist or not permitted access)
return(error);
allocate file table entry for inode, initialize count, offset;
allocate user file descriptor entry, set pointer to file table entry;
if (type of open specifies truncate file)
free all file blocks (algorithm free);
unlock (inode); /* locked above in namei */
return(user file descriptor);

Figure 5.2. Algorithm for Opening a File

Suppose a process executes the following code, opening the file “/etc/passwd”
twice, once read-only and once write-only, and the file “local” once, for reading and
writing.?

1. All system calls return the value —1 if they fail. The return value —1 will not be explicitly
mentioned when discussing the syntax of the system calls.

2. The definition of the open system call specifies threc parameters (the third is used for the creare
mode of open), but programmers usually use only the first two. The C compiler docs not check that
the number of parameters is correct. System implementations typically pass the first two parameters
and a third “garbage” parameter (whatever happens to be on the stack) to the kernel. The kernel



94 SYSTEM CALLS FOR THE FILE SYSTEM

user file
descriptor table file table inode table
0
! ;
2 . :
3 ~. : :
4 S\ ' count(/c:tc/passwd)
> N\ count - 2
6 \ Y | Read )
7 \ :

b 1™ Rd-wit
conlmt (local)
/
] count

1 Write

Figure 5.3. Data Structures after Open

fd1 = open(*“/etc/passwd”, O RDONLY);
fd2 = open(“local”, O_ RDWR);
fd3 = open(‘““/etc/passwd”, O_WRONLY):

Figure 5.3 shows the relationship between the inode table, file table, and user file
descriptor data structures. Each open returns a file descriptor to the process, and
the corresponding entry in the user file descriptor table points to a unique entry in

does not check the third parameter unless the second parameter indicates that it must, allowing
programmers to encode only two parameters.



5.1 OPEN
user file
descriptor tables

(proc A) file table

0

1

2

3

4 .

3 - ‘\\\ count p .. q7]

: 1

(proc B)

0

! count

2 1 Rd-Wrt]

3 .

4 v Y

5 \

inode table

cognt(/ etc/passwd)

count  (jocal)

cmlmt (private)

Figure 5.4. Data Structures after Two Processes Open Files

95



9% SYSTEM CALLS FOR THE FILE SYSTEM

the kernel file table even though one file (“/etc/passwd”) is opened twice. The file
table entries of all instances of an open file point to one entry in the in-core inode
table. The process can read or write the file *“/etc/passwd” but only through file
descriptors 3 and S in the figure. The kernel notes the capability to read or write
the file in the file table entry allocated during the open call. Suppose a second
process executes the following code.

fd1 = open(“/etc/passwd”, O_RDONLY);
fd2 = open(“private”, O_RDONLY);

Figure 5.4 shows the relationship between the appropriate data structures while
both processes (and no others) have the files open. Again, each open call results in
allocation of a unique entry in the user file descriptor table and in the kernel file
table, but the kernel contains at most one entry per file in the in-core inode table.

The user file descriptor table entry could conceivably contain the file offset for
the position of the next I/0 operation and point directly to the in-core inode entry
for the file, eliminating the need for a separate kernel file table. The examples
above show a one-to-one relationship between user file descriptor entries and kernel
file table entries. Thompson notes, however, that he implemented the file table a_ a
separate structure to allow sharing of the offset pointer between several user file
descriptors (see page 1943 of [Thompson 78]). The dup and fork system calls,
explained in Sections 5.13 and 7.1, manipulate the data structures to allow such
sharing.

The first three user file descriptors (0, 1, and 2) are called the standard input,
standard output, and standard error file descriptors. Processes on UNIX systems
conventionally use the standard input descriptor to read input data, the standard
output descriptor to write output data, and the standard error descriptor to write
error data (messages). Nothing in the operating system assumes that these file
descriptors are special. A group of users could adopt the convention that file
descriptors 4, 6, and 11 are special file descriptors, but counting from 0 (in C) is
much more natural. Adoption of the convention by all user programs makes it easy
for them to communicate via pipes, as will be seen in Chapter 7. Normally, the
control terminal (see Chapter 10) serves as standard input, standard output and
standard error.

'S.2 READ

The syntax of the read system call is
number = read(fd, buffer, count)

where fd is the file descriptor returned by open, buffer is the address of a data
structure in the user process that will contain the read data on successful
completion of the call, count is the number of bytes the user wants to read, and
number is the number of bytes actually read. Figure 5.5 depicts the algorithm read
for reading a regular file. The kernel gets the file table entry that corresponds to



5.2 READ 97

algorithm read
input: user file descriptor
address of buffer in user process
number of bytes to read
output: count of bytes copied into user space
{
get file table entry from user file descriptor;
check file accessibility;
set parameters in u area for user address, byte count, I/O to user;
get inode from file table;
lock inode;
set byte offset in u area from file table offset;
while (count not satisfied)
{
convert file offset to disk block (algorithm bmap);
calculate offset into block, number of bytes to read;
if (number of bytes to read is 0)
/* trying to read end of file */
break; /* out of'loop */
read block (algorithm breada if with read ahead, algorithm
bread otherwise);
copy data from system buffer to user .address;
update u area fields for file byte offset, read count,
address to write into user space;
release buffer; /* locked in bread */
}
unlock inode;
update file table offset for next read;
return(total number of bytes read);

Figure 5.5. Algorithm for Reading a File

the user file descriptor, following the pointer in Figure 5.3. It now sets several 1/0
parameters in the u area (Figure 5.6), eliminating the need to pass them as.
function parameters. Specifically, it sets the I/0 mode to indicate that a read is
being done, a flag to indicate that the I/O will go to user address space, a count
field to indicate the number of bytes to read, the target address of the user data
buffer, and finally, an offset field (from the file table) to indicate the byte offset
into the file where the I/0O should begin. After the kernel sets the I/O parameters
in the u area, it follows the pointer from the file table entry to the inode, locking
the inode before it reads the file.

The algorithm now goes into a loop until the read is satisfied. The kernel
converts the file byte offset into a block number, using algorithm bmap, and it
notes the byte offset in the block where the 1/0 should begin and how many bytes



98 SYSTEM CALLS FOR THE FILE SYSTEM

mode indicates read or write

count count of bytes to read or write

offset byte offset in file

address  target address to copy data, in user or kernel memory
flag indicates if address is in user or kernel memory

Figure 5.6. 1/0 Parameters Saved in U Area

in the block it should read. After reading the block into a buffer, possibly using
block read ahead (algorithms bread and breada) as will be described, it copies the
data from the block to the target address in the user process. It updates the 1/0
parameters in the u area according to the number of bytes it read, incrementing the
file byte offset and the address in the user process where the next data should be
delivered, and decrementing the count of bytes it needs to read to satisfy the user
read request. If the user request is not satisfied, the kernel repeats the entire cycle,
converting the file byte offset to a block number, reading the block from disk to a
system buffer, copying data from the buffer to the user process, releasing the buffer,
and updating 1/0 parameters in the u area. The cycle completes either when the
kernel completely satisfies the user request, when the file contains no more data, or
if the kernel encounters an error in reading the data from disk or in copying the
data to user space. The kernel updates the offset in the file table according to the
number of bytes it actually read; consequently, successive reads of a file deliver the
file data in sequence. The /seek system call (Section 5.6) adjusts the value of the
file table offset and changes the order in which a process reads or writes a file.

#tinclude <fcntlh>
main{)
{
int fd;
char lilbufl20], bigbufl1024];

fd = open(“/etc/passwd”, O_ RDONLY);
read(fd, lilbuf, 20);

read(fd, bigbuf, 1024);

read(fd, lilbuf, 20);

)

Figure 5.7. Sample Program for Reading a File

Consider the program in Figure 5.7. The open returns a file descriptor that the
user assigns to the variable fd and uses in the subsequent read calls. In the read
system call, the kernel verifies that the file descriptor parameter is legal, and that




5.2 READ 99

the process had previously opened the file for reading. It stores the values lilbuf,
20, and O in the u area, corresponding to the address of the user buffer, the byte
count, and the starting byte offset in the file. It calculates that byte offset 0 is in
the Oth block of the file and retrieves the entry for the Oth block in the inode.
Assuming such a block exists, the kernel reads the entire block of 1024 bytes into a
buffer but copies only 20 bytes to the user address /ilbuf. It increments the u area
byte offset to 20 and decrements the count of data to read to 0. Since the read has
been satisfied, the kernel resets the file table offset to 20, so that subsequent reads
on the file descriptor will begin at byte 20 in the file, and the system call returns
the number of bytes actually read, 20.

For the second read call, the kernel again verifies that the descriptor is legal
and that the process had opened the file for reading, because it has no way of
knowing that the user read request is for the same file that was determined to be
legal during the last read. It stores in the u area the user address bigbuf, the
number of bytes the process wants to read, 1024, and the starting offset in the file,
20, taken from the file table. It converts the file byte offset to the correct disk
block, as above, and reads the block. If the time between read calls is small,
chances are good that the block will be in the buffer cache. But the kernel cannot
satisfy the read request entirely from the buffer, because only 1004 out of the 1024
bytes for this request are in the buffer. So it copies the last 1004 bytes from the
buffer into the user data structure bigbuf and updates the parameters in the u area
to indicate that the next iteration of the read loop starts at byte 1024 in the file,
that the data should be copied to byte position 1004 in bigbuf, and that the number
of bytes to to satisfy the read request is 20.

The kernel now cycles to the beginning of the loop in the read algorithm. It
converts byte offset 1024 to logical block offset 1, looks up the second direct block
number in the inode, and finds the correct disk block to read. It reads the block
from the buffer cache, reading the block from disk if it is not in the cache. Finally,
it copies 20 bytes from the buffer to the correct address in the user process. Before
leaving the system call, the kernel sets the offset field in the file table entry to 1044,
the byte offset that should.be accessed next. For the last read call in the example,
the kernel proceeds as in the first read call, except that it starts reading at byte
1044 in the file, finding that value in the offset field in the file table entry .for the
descriptor.

The example shows how advantageous it is for 1/O requests to start on file
system block boundaries and to be multiples of the block size. Doing so allows the
kernel to avoid an extra iteration in the read algorithm loop, with the consequent
expense of accessing the inode to find the correct block number for the data and
competing with other processes for access to the buffer pool. The standard 1/0
library was written to hide knowledge of the kernel buffer size from users; its use
avoids the performance penalties inherent in processes that nibble at the file system
inefficiently (see exercise 5.4).

As the kernel goes through the read loop, it determines whether a file is subject
to read-ahead: if a process reads two blocks sequentially, the kernel assumes that



100 SYSTEM CALLS FOR THE FILE SYSTEM

“all subsequent reads will be sequential until proven otherwise. During each
iteration through the loop, the kernel saves the next logical block number in the in-
core inode and, during the next iteration, compares the current logical block
‘numbser to the value previously saved. If they are equal, the kernel calculates the
physical block number for read-ahead and saves its value in the u area for use in
the breada algorithm. Of course, if a process does not read tothe end of a block,
the kernel does not invoke read-ahead for the next block.

Recall from Figure 4.9 that it is possible for some block numbers in an inode or
in indirect blocks to have the value 0, even though later blocks have nonzero value.
If a process attempts to read data from such a block, the kernel satisfies the request
by allocating an arbitrary buffer in the read loop, clearing its contents to 0, and
copying it to the user address. This case is different from the case where a process
encounters the end of a file, meaning that no data was ever written to any location
beyond the current point. When encountering end of file, the kernel returns no
data to the process (see exercise 5.1).

When a process invokes the read system call, the kernel locks the inode for the
duration of the call. Afterwards, it could go to sleep reading a buffer associated
with data or with indirect blocks of the inode. If another process were allowed to
change the file while the first process was sleeping, read could return inconsistent
data. For example, a process may read several blocks of a file; if it slept while
reading the first block and a second process were to write the other blocks, the
returned data would contain a mixture of old and new data. Hence, the inode is
left locked for the duration of the read call, affording the process a consistent view
of the file as it existed at the start of the call.

The kernel can preempt a reading process between system calls in user mode
and schedule other processes to run. Since the inode is unlocked at the end of a
system call, nothing prevents other processes from accessing the file and changing
its contents. It would be unfair for the system to keep an inode locked from the
time a process opened the file until it closed the file, because one process could
keep a file open and thus prevent other processes from ever accessing it. If the file
was “/etc/passwd”, used by the login process to check a user’s password, then one
malicious (or, perhaps, just errant) user could prevent all other users from logging
- in. To avoid such problems, the kernel unlocks the inode at the end of cach system
call that uses it. If another process changes the file between the two read system
calls by the first process, the first proccs‘s may read unexpected data, but the kernel
data structures are consistept.

For example, suppose the kernel executes the two processes in Figure 5.8
concurrently. Assuming both pf, complete their open calls before either one
starts its read or write calls, the kernel could execute the read and write calls in
any of six sequences: readl, read2, writel, write2, or readl, writel, read2, write2,
or readl, writel, write2, read2, and so on. The data that process A reads depends
on the order that the system executes the system calls of the two processes; the
system does not guarantee that, the data in the file remains the same after opening
the file. Use of the file and record locking feature (Section 5.4) allows a process to



